Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            This review examines recent developments in the application of stable isotope analyses (δ18O, δ13C, δ15N, δD) to lacustrine invertebrate remains. These remains are ubiquitous in lacustrine sediments and thus provide an opportunity to measure changes in stable isotope ratios across a range of timescales and environments and allow interpretive power beyond taxonomic studies. To date they have been relatively understudied in comparison to carbonate fossils and offer both opportunities and challenges and we explore both themes in this review. This review will explore improvements to analytical instrumentation and the opportunities that this presents, it will look at a range of new studies of the modern lacustrine environment and how these studies allow a more nuanced palaeoenvironmental approach. We review recent studies that have used these advancements in understanding to help to reveal new knowledge of past climates, environments and ecology. In addition, we explore new studies that help to elucidate the role of methane-derived carbon to lacustrine food webs and the drivers behind this, including new data to estimate the contribution of methane derived carbon to an arctic lake. We conclude that major progress is currently being made in invertebrate-isotope analyses, and we expect this to continue apace.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Black carbon is a paleofire proxy that has been measured from glacial ice, snow, soils and lake sediments, though relatively few comparisons have been made with other fire indicators in sedimentary geoarchives. Microscopic charcoal, quantified from palynological microscope slides and macroscopic charcoal, quantified from wet-sieved deposits, are the most commonly applied methods for paleofire interpretation of Quaternary sediments. This research explores the down-profile patterns across three paleofire proxies (refractory black carbon, microscopic and macroscopic charcoal) and potential paleofire interpretations from a sediment core dating to the last centuries from Speke Gulf, Lake Victoria, and a young soil profile from a kopje located in the surrounding watershed in Serengeti National Park, Tanzania. The results of three paleofire metrics show similar trends within each site, with a positive trend across all metrics and increasing variability with increased measurement values (heteroscedastic). Notably, refractory black carbon (rBC) concentrations are two orders of magnitude higher in lake sediment samples compared to soil samples. rBC is positively correlated with both microscopic and macroscopic charcoal values and the overall profile patterns down the sediment core are similar, with the exception of the rBC increases from 2.5 to 0 cm depth that may result from increased fossil fuel combustion. The Speke Gulf rBC measurements are in an intermediate range between those published from glacial ice and other lake sediments. New rBC records from different ecosystems and temporal scales will provide paleofire insights and potential to interpret source areas and depositional patterns. The exploration of soil archives offers the potential to exploit semi-arid ecosystems and archaeological sites that have no nearby traditional paleoenvironmental study site targets.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Abstract An extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables a more robust analysis of global mean surface temperature (GMST) and associated uncertainties than was previously available. We applied five different statistical methods to reconstruct the GMST of the past 12,000 years (Holocene). Each method used different approaches to averaging the globally distributed time series and to characterizing various sources of uncertainty, including proxy temperature, chronology and methodological choices. The results were aggregated to generate a multi-method ensemble of plausible GMST and latitudinal-zone temperature reconstructions with a realistic range of uncertainties. The warmest 200-year-long interval took place around 6500 years ago when GMST was 0.7 °C (0.3, 1.8) warmer than the 19thCentury (median, 5th, 95thpercentiles). Following the Holocene global thermal maximum, GMST cooled at an average rate −0.08 °C per 1000 years (−0.24, −0.05). The multi-method ensembles and the code used to generate them highlight the utility of the Temperature 12k database, and they are now available for future use by studies aimed at understanding Holocene evolution of the Earth system.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
